skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rodríguez, Alejandro"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present geochemical data from gas samples from ~1200 km of arc in the Central Volcanic Zone of the Andes (CVZA), the volcanic arc with the thickest (~70 km) continental crust globally. The primary goals of this study are to characterize and understand how magmatic gases interact with hydrothermal systems, assess the origins of the major gas species, and constrain gas emission rates. To this end, we use gas chemistry, isotope compositions of H, O, He, C, and S, and SO2 fluxes from the CVZA. Gas and isotope ratios (CO2/ST, CO2/CH4, H2O/ST, δ13C, δ34S, 3He/4He) vary dramatically as magmatic gases are progressively affected by hydrothermal processes, reflecting removal and crustal sequestration of reactive species (e.g., S) and addition of less reactive meteoric and crustal components (e.g., He). The observed variations are similar in magnitude to those expected during the magmatic reactivation of volcanoes with hydrothermal systems. Carbon and sulfur isotope compositions of the highest temperature emissions (97–408 ◦C) are typical of arc magmatic gases. Helium isotope compositions reach values similar to upper mantle in some volcanic gases indicating that transcustal magma systems are effective conduits for volatiles, even through very thick continental crust. However, He isotopes are highly sensitive to even low degrees of hydrothermal interaction and radiogenic overprinting. Previous work has significantly underestimated volatile fluxes from the CVZA; however, emission rates from this study also appear to be lower than typical arcs, which may be related to crustal thickness. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026
  2. Spring waters from across the Costa Rica margin were analyzed for their Li and He isotope compositions to determine the utility of Li isotopes as a tracer of volatile sources in subduction zones. Li isotope ratios systematically decrease with increasing depth to the subducting slab: averaging +15.0‰ ± 9.2‰ in the outer forearc (<40 km to the slab), +9.3‰ ± 4.3‰ in the forearc (40–80 km to the slab), and +5.8‰ ± 2.8‰ in the arc (>80 km to the slab). In contrast, air-corrected 3He/4He values (reported relative to the ratio in air, RA) range from 0.4 to 7.5 RA and increase from predominantly crustal values near the trench to mantle values in the arc. Together, these data support progressive devolatilization of the subducting plate with slab-derived Li components sourced from shallowly expelled pore fluids in the outer forearc, sedimentary and/or altered oceanic crust contributing to the forearc, and limited slab input beneath the arc. 
    more » « less
  3. Rattlesnake venoms may be classified according to the presence/absence and relative abundance of the neurotoxic phospholipases A 2 s (PLA 2 s), such as Mojave toxin, and snake venom metalloproteinases (SVMPs). In Mexico, studies to determine venom variation in Mojave Rattlesnakes (Crotalus scutulatus scutulatus) are limited and little is known about the biological and proteolytic activities in this species. Tissue (34) and venom (29) samples were obtained from C. s. scutulatus from different locations within their distribution in Mexico. Mojave toxin detection was carried out at the genomic (by PCR) and protein (by ELISA) levels for all tissue and venom samples. Biological activity was tested on representative venoms by measuring LD 50 and hemorrhagic activity. To determine the approximate amount of SVMPs, 15 venoms were separated by RP-HPLC and variation in protein profile and proteolytic activity was evaluated by SDS-PAGE (n = 28) and Hide Powder Azure proteolytic analysis (n = 27). Three types of venom were identified in Mexico which is comparable to the intraspecific venom diversity observed in the Sonoran Desert of Arizona, USA: Venom Type A (∼Type II), with Mojave toxin, highly toxic, lacking hemorrhagic activity, and with scarce proteolytic activity; Type B (∼Type I), without Mojave toxin, less toxic than Type A, highly hemorrhagic and proteolytic; and Type A + B, containing Mojave toxin, as toxic as venom Type A, variable in hemorrhagic activity and with intermediate proteolytic activity. We also detected a positive correlation between SVMP abundance and hemorrhagic and proteolytic activities. Although more sampling is necessary, our results suggest that venoms containing Mojave toxin and venom lacking this toxin are distributed in the northwest and southeast portions of the distribution in Mexico, respectively, while an intergradation in the middle of both zones is present. 
    more » « less